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Abstract

A first-principles computational scheme was applied for studying edge and screw dislocations in non-elemental systems for the first
time. For the case of TiN as a model system, we established the preferred slip systems for edge and screw dislocations, with a Burgers
vector of a/2h1�10i on the {001}, {110} and {111} slip planes. The simulations adopted periodically repeating triclinic supercells con-
taining a dipole of dislocations arranged such that periodicity can be maintained without imposition of large spurious elastic stresses. It
was determined that the Peierls stress is the smallest for slip along the {110} plane, and largest for slip along the {001} plane, for both
edge and screw dislocations. The dislocation core structures and the Peierls stress results are discussed and compared to those in a purely
ionic MgO system.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Continuum elasticity has been very successful in describ-
ing the long-range fields of dislocations [1]. However, close
to the dislocation core there are large lattice distortions and
the linear elastic solution diverges [2]. The modeling of dis-
location cores and their properties has been an active
research field in materials physics. Atomistic simulations
demonstrate that local forces at the dislocation core and
their coupling to the applied stress can have a dramatic
effect on structural properties [3]. This also applies to the
Peierls stress, the minimum stress required to sustain the
glide of dislocations through the crystal lattice [4]. Thus,
accurate modeling of dislocation cores and the Peierls
stress is key to the predictive modeling of the mechanical
properties of materials.
http://dx.doi.org/10.1016/j.actamat.2014.04.047
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In this paper, we employ electronic structure calcula-
tions based on density functional theory (DFT) to calculate
the core structures and the Peierls stress for dislocations in
titanium nitride (TiN). In recent years, multilayered nano-
composites made of TiN and Al have been used to explore
the effect of layer thickness on hardness and flow strength
[5–7]. It was found that, for a layer thickness of less than
5 nm, a high flow strength of 4.5 GPa and compressive
deformability (5–7% plastic strain) are obtained in such
layered composites. Understanding dislocation slip across
the Al/TiN interface as well as through the TiN bulk is
important to help interpret the experimental phenomena.
In this paper, the DFT calculations aim to elucidate the
preferred slip planes of dislocations in TiN, as well as pro-
viding measures of the resistance to the glide of disloca-
tions in TiN.

For many ceramics, it is difficult to induce plastic flow
[8]. TiN is an important engineering material, notably used
as barrier layer material in the electronics industry. TiN is
eserved.
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also a ceramic material that has complex bonding charac-
ter, i.e. mixed covalent, ionic and metallic bonding. The
mechanical properties of TiN thin films are of considerable
interest and the measured hardness of TiN thin films at
various film thicknesses is well determined [9]. However,
surprisingly, there is little prior work on the preferred slip
systems in TiN, either experimentally or theoretically. For
bulk TiN, the material is brittle at temperatures below
750 �C [10], which might suggest that there is little or no
dislocation activity in TiN below such temperature. How-
ever, experimentally, significant dislocation activities were
observed at room temperature in Ti–TiN multilayer speci-
mens for which the TiN layer is 150 nm in thickness [11].
Earlier, it was proposed that dislocations can nucleate
and slip in ceramics at the nanoscale [12].

Modeling of dislocations in multi-element ceramic mate-
rials has been primarily done using shell model based
empirical pair potentials. Modeling of core structures of
dislocations in these materials has been used for strongly
ionic materials where empirical pair potentials can reason-
ably describe the bonding, a typical example being MgO
[13–15]. For TiN, where the bonding is complex enough
that it cannot be considered as strongly ionic, reliable
empirical pair potentials do not exist. Thus, DFT remains
the only way to accurately describe dislocations in TiN.

Over the years, a number of DFT studies have been
applied to predict the dislocation core structures and some-
times also applied to predict the Peierls stress of disloca-
tions. Recent DFT efforts have concentrated on modeling
of screw dislocations in pure body-centered cubic (bcc)
metals, such as Fe, Mo and Ta [16–25], screw dislocations
in bcc W alloys [26,27], dislocations (both edge and screw)
in fcc Al [28] and dislocations in hexagonal close-packed
(hcp) metals, including Mg (both edge and screw), Ti
(screw) and Zr (screw) [29–33]. For non-metallic materials,
DFT modeling of dislocations has been limited to single-
element semiconductor materials, such as Si [34,35]. To
the best of our knowledge, this is the first time that DFT
has been used to study dislocation and its Peierls stress in
a multi-element ceramic material.

Structurally, since TiN has a rock-salt (B1) crystal struc-
ture, the shortest possible Burgers vector is a0/2h11 0i,
where a0 is the lattice constant; however, the slip planes
are not known. In this paper, we consider three low index
planes, (11 0), (001) and (111), as the possible slip planes.
In ceramic materials with a rock-salt structure, we identi-
fied three materials that have experimentally determined
preferred slip systems for comparison. One is in the case
of a strongly ionic material, MgO, in which the preferred
slip system is 1/2h110i{110} followed by 1/2h110i{001}
[8]. Another one is in the case of AgCl, a strongly metallic
material, in which a “pencil” slip of Burgers vector
a0/2h110i was observed [36]. Pencil slip is possible if slip
can occur readily on {111} planes or a combination of
{10 0}, {110} or {111} planes. The third one is in the case
of TiCx. This material is closest to TiN in bonding chemis-
try. However, the strongly off-stoichiometric nature of
TiCx samples often seen in experiments makes the link
to TiN somewhat unclear. Both 1/2h110i{11 0} and
1/2h110i{11 1} slip systems were observed to be active at
low temperature in microhardness indentation experiments
of TiC0.91 by Chien et al. [37]. Previous DFT calculations
show similar ideal shear strength in TiN in various shearing
planes and directions [38].

To determine the Peierls stress, there are two
approaches. One is based on the Peierls–Nabarro (PN)
model [39–41], where the classical PN model [42,43] is used
to calculate the dislocation core properties based on vari-
ous assumptions [41]. This approach incorporates the
generalized stacking fault (GSF) energy calculations into
the solution of the PN equation, and has been applied to
compute the Peierls stress of dislocations in MgO [44–46].
In this paper, we used the direct approach, i.e. we com-
puted the Peierls stress from DFT simulations directly.

2. The details of the simulation procedure

Our DFT calculations were performed using the efficient
planewave basis code Vienna ab initio Simulation Package
(VASP) [47,48], employing the Perdew, Burke and Ernzer-
hof [49] exchange–correlation functional and the projector-
augmented wave methodology [50]. To obtain accurate
atomic forces and stresses, a 1 � 1 � 7 Monkhorst–Pack
mesh for k-point sampling and a planewave kinetic energy
cutoff of 500 eV for the planewave expansion of the wave
functions were used in all our supercell calculations. This rel-
atively high number of k-points is identified to be required
for our simulations, as DFT predicts TiN to be a metallic
system. The calculated lattice parameter (0.424 nm) and
bulk modulus (306 GPa) in the rock salt crystal structure
[38] were in excellent agreement with other DFT calculations
and experimental values [38,51]. The DFT computed elastic
constants of TiN in the cubic axis are C11 = 639 GPa,
C12 = 139 GPa and C44 = 160 GPa, in good comparison
with experimental measured C11 = 625 GPa,
C12 = 165 GPa and C44 = 163 GPa [52]. To compute the
elastic constants in directions other than the cube axes, the
elastic constant matrix is transformed according to
fc’g ¼ f~QgfcgfQg, where Qijkl = TkiTlj and {T} is the trans-
formation matrix between two sets of axes [2].

The initial atomic structure of dislocation was created
using anisotropic elastic theory employing the Stroh solu-
tion [2]. The calculated elastic displacements are exact at
large distances from the core (where the strain is infinites-
imal), but are only approximate close to the core. For
DFT calculations, a computational supercell employing
the periodic boundary conditions is required. There have
been several discussions in the literature on the periodic
image effects in atomistic modeling of dislocations
[17,24,53–56], mainly with examples on the screw disloca-
tions. Introducing the dislocation dipole introduces a plas-
tic strain of

eij ¼
ðbiAj þ bjAiÞ

2S
ð1Þ
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where A is the dipole cut vector and S is the area of the
simulation supercell perpendicular to the dislocation line
[18,53]. A homogeneous strain of opposite sign and equal
to the plastic strain in magnitude is applied to the periodic
supercell. In Fig. 1, a schematic diagram of dislocation(s)
in a periodically repeating supercell is shown, with (a)
quadrupole dislocations in supercell, and (b) a triclinic
supercell with a dislocation dipole generating an array of
dislocations identical to case (a). The advantage of a quad-
rupole array of dislocation arrangement is that the super-
position of the elastic stress fields produces zero stress at
any dislocation center. As shown in Fig. 1b, a quadrupole
array of dislocation can be modeled using a dislocation
dipole in the supercell by choosing a triclinic supercell
[24]. For pure edge or screw dislocations, a simple proce-
dure that is equivalent to Eq. (1) can be applied to the
supercell to correct for the plastic strain. For the edge dis-
location case in Fig. 1b, the length of the supercell along
the Burgers vector b direction can be chosen as
(2n + 1)|b|, where n is an integer. This is to make the tri-
clinic supercell periodic, as the introduction of a single dis-
location displaces the lattice in the upper half of the
supercell by b/2 with respect to the lower half along the
Burgers vector direction. Similarly, the introduction of
screw dislocations also displaces the lattice in the upper
half of the supercell by b/2 with respect to the lower half.
So the supercell is tilted by b/2 to make the supercell peri-
odic and still in a stress-free condition.

Owing to the above considerations, all the supercells in
our DFT calculations adopt the triclinic supercell geome-
try, which contains a dislocation dipole in the supercell.
The size of the supercell needs to be large enough to avoid
core–core interaction. The dislocations are separated by a
distance of �2–3 nm away from each other in the super-
cells, with dimensions along x, y and z being 4–5, 3–4
and 0.3 nm, respectively, containing a total number of
312–468 atoms. This kind of computational setup makes
the DFT calculations of the transition metal nitrides com-
putationally intensive, especially with the relatively high
number of k-points. Once the forces on each atom are con-
verged using DFT, the correct geometry of the dislocation
core is obtained. During all calculations, each component
of the force on every atom was smaller than 0.05 eV Å�1.

Once the equilibrium structure of dislocation cores in a
supercell is determined, the Peierls stress is calculated by
applying shear strain on the supercell. Shear strain is
applied by distorting the supercell in the desired directions,
Fig. 1. Schematic diagram of dislocation dipoles in a periodically repeating sup
with a dislocation dipole.
in incremental steps, and the applied shear strain results in
shear stress. The stress values are obtained from the DFT
stress tensors in VASP calculations. These values eliminate
the spurious Pulay stress by using a high energy cutoff
(500 eV). Good agreement is obtained between the DFT
stress and the estimate from the shear strain applied using
the elastic anisotropic shear modulus of TiN in different
crystal orientations. For edge dislocation calculations, the
shear strain is applied in the plane containing the disloca-
tion and along the Burgers vector of dislocations. For
example, if the Peierls stress is to be estimated for the
motion of dislocation in the y plane and the Burgers vector
is along the x direction, then the shear strain applied is eyx.
For screw dislocations, the shear strain is applied in the
plane of motion of dislocations and along the Burgers vec-
tor. For example, if the Peierls stress is to be estimated for
motion of a dislocation in the y plane and the Burgers vec-
tor is along the z direction, the shear strain applied is eyz.
An alternative way to determine the Peierls stress is to
use the nudged elastic band (NEB) method [57–59], e.g.,
using the recent proposed modification to the NEB method
to calculate the Peierls stress [60]. However, we note that
such a strategy is computationally expensive, and hence
was not pursued here.

Once the Peierls stress is determined from DFT, a cor-
rection to the Peierls stress is applied. This correction is
due to the attractive force between dipoles when perturbed
from equilibrium quadrupolar configuration. A simple but
qualitative estimation of the underestimation of Peierls
stress can be given by an isotropic elasticity [2] correction
to the calculated Peierls stress by considering only the
stress fields from two neighboring dislocations. A more
quantitative estimation of the underestimation of Peierls
stress is given by anisotropic elasticity and to calculate
the stress fields arising from an infinite array of dislocation
dipoles due to periodic images. This is computed as the
derivative of the elastic energy of the dislocation dipole
with periodic arrangements with respect to the dislocation
position. The methodology developed by Cai et al. [53,54]
allows these anisotropic elastic calculations. Romaner
et al. applied such methodology to compute the correction
to Peierls stress in the DFT calculations of screw disloca-
tions in W and showed that the corrected Peierls stress con-
verges rapidly with supercell sizes [27]. In this work, we
also carried out similar anisotropic elastic calculations to
estimate the correction to the Peierls stress due to the small
supercell sizes in DFT.
ercell. Left: quadrupole dislocations in supercell; right: a triclininc supercell
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3. Results and discussion

3.1. Core structure of edge dislocations

Fig. 2 shows the core structure of an a0/2[1�10] (001)
edge character dislocation in TiN, with (a) the atomic
structure of the supercell, (b) the differential displacements
(DDs) [61,62] and the Nye tensor distribution [63] for the
dislocation and (c) a “bird’s eye” examination of the dislo-
cation core structure. The simulation supercell has the
geometry of x in [1�10], y in [001] and z in [110] directions.
The dislocation line direction is in the z direction. DDs
show the relative displacement from a perfect lattice of
two nearest neighbor atoms, projected along the Burgers
vector direction by a vector of the corresponding length
between the two atoms. The Nye tensor distribution com-
putes the DDs between all nearest neighbor atoms, which
produces a distribution of misfit or Burgers vector distribu-
tion. Such a distribution is projected onto the plane per-
pendicular to the dislocation line and is smoothly
interpolated. The extrema in the Nye tensor distribution
represent the dislocation core atoms. In this case, the core
region includes two Ti and two N atoms at the extra half
Fig. 2. (a) Atomic structure of the supercell containing a dipole of a0/2[1�10](00
tensor distribution of the corresponding supercell. (c) Atomic structure of a si
plane side of the dislocation on the slip plane (Fig. 2b),
indicating a compact core. The Nye tensor distribution plot
also confirms our assumption of cores not interacting with
each other during the DFT simulations. Fig. 2c shows a
detailed examination of the dislocation core, with two lines
that mark the continuous line of atoms in a nearly perfect
crystal. Two extra half planes (one Ti and one N) are seen
in between these lines. The criteria for the bonds between
atoms to be shown for a pair of atoms are that the bond
length be less than 2.6 Å. There are only two atoms in
the core region that have a decrease of coordination num-
ber (from 6 to 5), presumably due to the highly rigid nature
of the bonds. Due to the rigid bonding nature in ceramic, if
the initial introduction of a dislocation into the crystal were
not through anisotropic elasticity theory displacements, for
example by a simply “half plane” cut, the resultant DFT
relaxed dislocation core would be very different (not
shown), with more atoms in the core region with low coor-
dination numbers.

Fig. 3 shows the core structure of an a0/2[1�10](110)
edge character dislocation in TiN, also in (a) the atomic
structure of the supercell, (b) the DD [61,62] and the Nye
tensor distribution [63] for the dislocation and (c) a “bird’s
1) edge dislocations. Edge dislocations are marked in the supercell. (b) Nye
ngle edge dislocation.
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eye” examination of the dislocation core structure. The
simulation supercell has the geometry of x in [1�10], y in
[110] and z in [001] directions. The dislocation line direc-
tion is again in the z direction. It is noted that the core
of this dislocation is more extended than the a0/
2[1�10](00 1) edge dislocation. Fig. 3c shows a detailed
examination of the dislocation core, with two lines that
mark the continuous line of atoms in a nearly perfect crys-
tal. The core region contains up to five Ti and five N atoms
at the extra half plane side of the dislocation on the slip
plane, indicating an extended core. Again, the bonds are
shown for pairs of atoms with a distance of less than
2.6 Å, and two N and two Ti atoms have a decrease of
coordination number from 6 to 5. This core structure is
essentially the same as the core structure found in previous
atomistic studies of MgO using empirical potential [15].

Fig. 4 shows the core structure of an a0/2[1�10](111)
edge character dislocation in TiN, again in (a) the atomic
structure of the supercell, (b) the DD [61,62] and the Nye
tensor distribution [63] for the dislocation and (c) a “bird’s
eye” examination of the dislocation core structure. The
simulation supercell has the geometry of x in [1�10], y in
[111] and z in [11�2] directions, with the dislocation line
direction again in the z direction. A detailed disregistry
analysis along the slip plane is also shown in Fig. 4d. Both
the disregistry analysis and the Nye tensor plot suggested
that this edge dislocation dissociates into two partial dislo-
cations. We have also carried out DFT calculations of the
Fig. 3. (a) Atomic structure of the supercell containing a dipole of a0/2[1�10]
supercell. (c) Atomic structure of a single edge dislocation.
generalized stacking fault energy calculations [64] on (111)
planes, which is to be published elsewhere. On (111)
planes, the DFT results of the generalized stacking fault
energy as a function of displacements along the h11�2i
plane demonstrate a stable stacking fault at an a0/3h112i
displacement [64]. The dislocation dissociation is

a0

2
h1�10i ¼ a0

6
h2�11i þ a0

6
h1�2�1i ð2Þ

Using isotropic linear elasticity analysis, based on the
stacking fault energy of 1.09 J m�2, the estimated separa-
tion distance between the two partials is 0.8 nm, or less
than three times that of the Burgers vector length in the
h1 10i direction. For such a short separation distance, it
is conceivable that the atomistic calculated separation dis-
tance between the partial dislocations may be smaller than
this value, due to a strong influence from the dislocation
cores. Taking this factor into consideration, the agreement
between the estimated partial separation distance value and
that from the DFT calculated cores (0.4–0.7 nm) is reason-
ably good.

Fig. 4c shows a detailed examination of the dislocation
core, with two lines that mark the continuous line of atoms
in a nearly perfect crystal. The two dislocations in the
supercell are not equal to each other since one is “N termi-
nated”, and the other is “Ti terminated” at the slip plane.
This is due to the dipole arrangement of the supercell. Both
dislocations show clear splitting of partials. Interestingly,
(110) edge dislocations. (b) Nye tensor distribution of the corresponding



Fig. 4. (a) Atomic structure of the supercell containing a dipole of a0/2[1�10](111) edge dislocations. (b) Nye tensor distribution of the corresponding
supercell. Atomic structure of a single edge dislocation with (c) (left) N termination and (right) Ti termination. (d) Disregistry along the slip plane of
N-termination dislocation in (c).
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inside both dislocation cores, no atom has a coordination
number different from that of bulk, due to the splitting of
a dislocation into two partials.

3.2. Peierls stress of edge dislocations

To calculate the Peierls stress on a given plane of edge
dislocations with Burgers vector a0/2[1�10], shear strain is
applied on (001), (11 0) and (111) planes along [1�10].
After the introduction of dislocations, both the lattice vec-
tors and the internal atomic positions of the computational
supercell are relaxed, so it is stress free. Then shear strain is
applied by tilting the lattice vectors of the supercell in the
desired directions. The initial value of the resultant shear
stress can be estimated using elastic constants and the
applied shear strain, which is found to be comparable to
the DFT stress in the supercell. Since a limited number
of DFT calculations was performed, these values are
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reported as a range. The lower number represents the larg-
est value of the shear stress for which the dislocation did
not move, while the higher number represents the stress
at which the dislocation moved by at least half a Burgers
vector. For an a0/2h110i{11 0} edge dislocation, it was
determined that the Peierls stress sDFT

p is between 0.5 and
0.6 GPa. For the a0/2h110i{11 1} edge dislocation, it was
determined that the Peierls stress sDFT

p is between 1.7 and
2.2 GPa. For the a0/2h110i{00 1} edge dislocation, the
DFT calculated Peierls stress sDFT

p is between 7.9 and
8.8 GPa.

Table 1 lists both the uncorrected DFT Peierls stress
(sDFT

p ), the correction to the calculated value (DsDFT
p ) and

the corrected Peierls stress (sDFT
p + DsDFT

p ). After correc-
tion, the lowest Peierls stress obtained for edge dislocations
is 1.3–1.4 GPa for the a0/2[1�10](1 10) slip system. The
second lowest Peierls stress obtained is 2.7–3.2 GPa for
the a0/2[1�1 0](111) slip system, and the highest Peierls
stress (8.7–9.6 GPa) is for the a0/2[1�10](0 01) slip system.
For the a0/2[1�1 0](111) edge character dislocation in TiN,
the dislocation with “Ti terminated” at the slip plane glides
more than the “N terminated” dislocation. The correction
to stress computed is thus an upper limit.

For comparison, the Peierls stresses for edge disloca-
tions in MgO as determined from the classical P–N model
using DFT inputs of GSF energies are 0.08 GPa for the
a0/2[1�10](1 10) slip system and 0.3 GPa for the a0/2[1�10]
(001) slip system [45]. The Peierls stress for the a0/2[1�10]
(111) edge dislocation is not determined but is assumed
to be of a higher value since experimentally the slip for this
dislocation is not observed. First, it is noticed that the
lowest Peierls stress slip system for both TiN and MgO is
1/2[1�10](1 10); however, the second lowest Peierls stress
slip system is different. Second, both values are smaller
than those for the corresponding TiN slip systems. Third,
we’d also like to comment on the relationship of the Peierls
barriers and the hardness measurements in these materials.
For the case of MgO, the nominally pure single crystal with
(100) orientation has a hardness of 9.2 GPa [65]. For TiN,
the reported typical hardness ranging from 17.3 to
22.1 GPa for (001) and (011), and from 19.8 to
23.8 GPa for (111) orientation [9]. The normal stress is
1/3 of the hardness. To get shear stress on a specific slip
system, a Schmid factor is multiplied to the normal stress.
The Schmid factors for both MgO and TiN are 0.25, 0.5 for
loading along [011] and [00 1] for the most possible slip
system, ½[1�10](1 10) [9]. So the hardness data along
(100) or (011) orientations should be divided by a factor
Table 1
The Peierls stress of edge dislocations calculated for various slip systems in TiN
calculations, the results of anisotropic elasticity with periodic images.

Slip system sDFT
p (GPa) DsDFT

p (GP

h110i{110} 0.5–0.6 0.83
h110i{111} 1.7–2.2 0.96
h110i{001} 7.9–8.8 0.82
of 6 or 12, in order to make a comparison to the Peierls
stress values. For the MgO case, the shear stress from the
reported hardness is much larger than the Peierls stress val-
ues for possible active slip systems. One possible reason is
due to the lack of a high density of dislocations in these
ceramic materials so the hardness is more related to the
nucleation barrier of dislocations rather than the Peierls
barriers. For TiN cases, the shear stress from the reported
hardness is larger than the Peierls stress values for the most
preferred slip system 1/2[1�10](1 10), but close to the Peierls
stress values for the second preferred slip systems,
1/2[1�10](111). Hardness also includes strain hardening,
which is not accounted here.

3.3. Core structure of screw dislocation

Similar to edge dislocations, we consider screw disloca-
tions with Burgers vector a0/2[110]. The simulation super-
cell has the geometry of x in [�1�12], y in [111] and z in [1�10]
directions. The dislocation line direction is in the z direc-
tion. The screw dislocation in TiN is found to spread in
the {110} plane, leading to the dislocation core structure
in Fig. 5, which shows a differential displacement map
[61,62] of the core structure of the a0/2[1�10] screw charac-
ter dislocation in TiN. On the differential displacement
map, only the displacement along the Burgers vector is
plotted. The strong asymmetry in the screw dislocation
core spread is also observed in the P–N model analysis of
the screw dislocation in MgO based on the generalized
stacking fault energies from DFT as inputs [46]. The
different bonding nature in TiN compared to MgO does
not change such features of the core structure of the
a0/2[1�10] screw dislocation.

3.4. Peierls stress of screw dislocation

To calculate the Peierls stress of the screw dislocation
with Burgers vector a0/2[1�10] along different slip planes,
shear strain is applied on (001), (110) and (111) planes
along [1�10]. After the introduction of the dislocation,
again, both the lattice vectors and the internal atomic posi-
tions of the computational supercell are relaxed so it is
stress free before the shear strain is applied.

We first applied shear strain on a simulation supercell
for the dislocation to glide on (110). The simulation is
set up with a triclinic supercell containing a dislocation
dipole as described earlier, with x in [001], y in [110]
and z in [1�10] directions. The dislocation line is in the z
, the P–N equation model estimated Peierls stress in MgO and, for DsDFT
p

a) sTotal
p (GPa) sp (GPa) (MgO)

1.3–1.4 0.08 [45]
2.7–3.2
8.7–9.6 0.3 [45]



Fig. 5. Differential displacement map of the screw dislocations. Black and blue dots represent Ti and N atoms, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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direction. Since the a0/2[1�10] screw dislocation has a core
spread mainly in the (110) plane, we expect the Peierls bar-
rier of the dislocation glide on this plane to be the lowest.
The applied shear strain eyz induces Peach–Koehler forces
in the x direction and screw dislocation moves in the
(110) plane. It was determined that the critical shear stress
is between 0.3 and 0.6 GPa. We use the differential dis-
placement map to show movement of the screw disloca-
tion. In Fig. 6a, it is clearly shown that after the critical
shear stress, a movement of screw dislocation on the
(110) plane is observed.

Next we also set up a simulation supercell to allow the
a0/2[1�10] screw dislocation to glide on the (111) plane,
with x in [�1�12], y in [111] and z in [1�10] directions. The
applied shear strain eyz should induce Peach–Koehler
forces in the x direction and the dislocation is expected
to move in the (111) plane. However, since this force has
a component on the neighboring (110) plane by an angle
of 35.26� and the Peierls stress of the screw dislocation to
glide along the (110) plane is small enough, it was observed
that the dislocation moved on the (110) plane instead.
Fig. 6b shows the movement of the screw dislocation on
the (110) plane.

Finally, we set up a simulation supercell to allow the a0/
2[1�10] screw dislocation to glide on the (001) plane, with x
in [110], y in [00 1] and z in [1�10] directions. The shear
strain eyz is applied on the supercell so the dislocation is
expected to move on the (001) plane. In this case, the dis-
location was found to move on the neighboring (111)
plane, which has an angle of 54.74� with the (001) plane.
Fig. 7 shows movement of such a screw dislocation on
the (11 1) plane after the critical shear stress was applied.
The critical shear stress is between 10.3 and 14.9 GPa. This
leads to the DFT calculated Peierls stress sDFT

p of the screw
dislocation along the (111) slip plane between 8.6 and
9.2 GPa. And it is estimated that the Peierls stress sDFT

p

of the screw dislocation along the (001) slip plane is greater
than 14.9 GPa.

In Table 2, both the uncorrected DFT Peierls stress
(sDFT

p ) and the correction to the calculated value (DsDFT
p )

and the corrected Peierls stress (sDFT
p + DsDFT

p ) for the slip
systems are listed. The lowest Peierls stress obtained for
screw dislocations is 0.4–0.7 GPa for the a0/2[1�10](110)
slip system. The second lowest Peierls stress obtained is
9.0–9.5 GPa for the a0/2[1�10](1 11) slip system. And the
highest Peierls stress is for the a0/2[1�10](0 01) slip system,
more than 15.3 GPa. For comparison, the Peierls stresses
for screw dislocations in MgO as determined from the clas-
sical P–N model using DFT inputs of GSF energies are
0.15 GPa for the a0/2[1�10](11 0) slip system and 1.6 GPa
for the a0/2[1�1 0](001) slip system [45]. The trend in the
screw dislocation is similar to the edge dislocation case dis-
cussed earlier. In TiN, the lowest Peierls barrier of the
screw dislocation is comparable to that of the edge disloca-
tion. However, it is noted that for the screw dislocation, the
second lowest Peierls barrier (slip along (111)) is much
higher than the edge dislocation counterpart by a large
quantity, �6.3 GPa.

4. Summary

Using the state-of-the-art DFT-based first-principles
method, the core structure and Peierls stress of both edge
and screw character dislocations in bulk TiN were mod-
eled. To the best of our knowledge, this is the first time that
DFT has been used to study dislocation and its Peierls
stress in a multi-element ceramic material. We used the
direct approach to compute the Peierls stress from DFT
simulations, adopting the triclinic supercell geometry,
which contains a dislocation dipole in the supercell. We
estimated the correction to the Peierls stress computed
from DFT which is due to the attractive force between
dipoles when perturbed from an equilibrium quadrupolar
configuration.

For the case of TiN as a model system, we established
the preferred slip systems for edge and screw dislocations,
with a Burgers vector of a/2h1�10i on the {001}, {11 0}
and {11 1} slip planes. It was determined that the Peierls
stress is the smallest for slip along the {110} plane, and
largest for slip along the {001} plane, for both edge and
screw dislocations. In comparison to the preferred slip sys-
tems in MgO, the lowest Peierls stress slip system for both
TiN and MgO is 1/2[1�10](110). However, the second
lowest Peierls stress slip system in TiN is 1/2[1�10](111)
and 1/2[1�10](0 01) in MgO. This is presumably due to
the bonding of TiN, which caused the a0/2[1�10](111) edge



Fig. 6. (a) Movement of screw dislocation in the (110) plane. (b) Movement of dislocation in the (110) plane. Though shear is applied to move in the
(111) plane the dislocation moves in the (110) plane, as the Peierls stress is small. Red and green arrows represent equilibrium and displaced screw
dislocation, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Movement of dislocation in the (111) plane (though shear is applied so that the screw dislocation moves in the (001) plane). Red and green arrows
represent equilibrium and displaced screw dislocation, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Peierls stress of screw dislocations calculated for various slip systems in TiN, the P–N equation model estimated Peierls stress in MgO and, for DsDFT

p

calculations, the results for anisotropic elasticity with periodic images.

Slip system sDFT
p (GPa) DsDFT

p (GPa) sTotal
p (GPa) sp (GPa) (MgO)

h110i{110} 0.3–0.6 0.13 0.4–0.7 0.15 [45]
h110i{111} 8.6–9.2 0.37 9.0–9.5
h110i{001} >14.9 0.37 >15.3 1.6 [45]
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dislocation to dissociate into two partial dislocations. It is
also noted that the Peierls barriers in TiN are higher than
the corresponding slip systems in MgO. In TiN, the lowest
Peierls barrier of the screw dislocation is comparable to
that of the edge dislocation. However, it is noted that for
the screw dislocation, the second lowest Peierls barrier with
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slip along (111) is much higher than the edge dislocation
counterpart.

The study presented here is envisioned to shed light on
the preferred slip systems in TiN. In the future, a compar-
ative study using other DFT based approaches such as the
Greens functions approach [23,29] will also be useful.
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